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The method proposed may be used to solve a large class of linear parabolic and hyper- 
bolic equations involving as independent variables time and two further spatial variables 
on a rectangular domain. The Laplace transform is used to reduce by one the number of 
independent variables, the resulting subsidiary equation having then to be one of the class 
which may be solved numerically by the FFT method. An effective numerical Laplace 
transform inversion algorithm is used to recover the solution of the original equation. 
The method has been successfully applied to a variety of test problems and found to be as 
accurate as established AD1 methods. It is easily programmed and handles a wide range 
of time-varying boundary conditions and source functions without complication. For 
such problems it can be very competitive with regard to computation times. The method 
possesses the single-step property in that the solution at a particular time point may be 
evaluated without requiring the solution at intermediate time points, in contrast with the 
requirement for most finite difference methods. Both parabolic and hyperbolic equations 
are solved by precisely the same algorithm. 

1. INTRODUCTION 

The use of numerical Laplace transform algorithms in the solution of linear para- 
bolic or hyperbolic partial differential equations involving time (or indeed a spatial 
variable) defined on the semi-infinite interval [0, co) has been proposed in [I, 21. A 
practical implementation using a particular numerical inversion scheme for the 
Laplace transform has been discussed by Zinober and Huntley [3]. 

The essential idea is that after applying the Laplace transform to the PDE (which 
may have source functions and/or boundary conditions which are time varying), the 
number of independent variables is reduced by one but the equation involves instead 
a complex parameter s. This (elliptic) equation may be solved by any suitable 
numerical method giving values of the Laplace transform of the solution over a 
spatial grid. The solution itself is recovered by a numerical Laplace inversion algorithm 
which means in practice that for a given time point the elliptic equation has to be 
solved for several specified values of the parameter s. The method is a single-step 
method in that the computations need only be performed for the specific time points 
for which the solution is required, in contrast to the several time steps required by 
conventional finite difference methods. 
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The purpose of the present paper is to put forward a novel combination of numerical 
transform techniques by employing the fast Fourier transform (FFT) to solve the 
subsidiary elliptic equation, defined over a rectangular spatial domain. Since the 
dependent variable is now complex it means that small changes have to be made to 
the FFT algorithms for real equations discussed in [4-71. 

The actual FFT algorithms used incorporated the five-point or nine-point approxi- 
mations to the subsidiary elliptic equation. The numerical Laplace transform inversion 
algorithm used was the one developed in [8-131 based upon the PadC approximation 
to ez, but there are others in the literature which could equally well have been used, for 
example, [14]. 

The essential features of these algorithms are described and results are presented 
for four test problems. These demonstrate that the method gives results of comparable 
accuracy with standard finite difference algorithms. The merits of the method are 
discussed in the concluding section. 

2. FORMULATION OF THE PROBLEM AND THE USE OF THE LAPLACE TRANSFORM 

The use of the Laplace transform to reduce the number of independent variables in 
the partial differential equation and boundary conditions is a device which can in 
principle be applied to a very large class of problems [l-3]. Here we concentrate on a 
restricted class for which the resulting transformed equation can be easily solved by 
FFT methods. The spatial domain is taken to be rectangular. Using the classification 
of Le Bail [6] the transformed equation must take the form 

which includes as special cases, Poisson’s equation with Dirichlet, Neumann, or 
periodic boundary conditions, and parabolic or hyperbolic equations with appro- 
priate initial and boundary conditions. Since the coefficients ai may be functions of an 
additional complex parameter s, the most general type of equation which would after 
Laplace transformation lead to an equation of form (2.1) is 

in which D = a/at and each of the Fi(D) expressions is a linear operator of the form 

Fi(D) = b,,,D’ + bi,r--lD’-l + *** + bi,o . 

The coefficients beg are allowed to be functions of y for i = 2,4, or 5. 
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If we denote by U(x, y, s) the Laplace transform of U(X, y, t) with respect to t, then 
the transform of a typical term in equation (2.2) is 

k = 0, I, 2;j = I,..., n, (2.3) 

where the terms @‘~/iiy~ ,..., DJ--l(@u/Qk) have to be specified at time t = 0. Thus, for 
example, 

where H,(x, y, s) represents all the initial condition information. Hence the transform 
of Eq. (2.2) can be written as 

where H(x, y, s) = C&, Hi(x, y, s) and G = Zk]. It is assumed that s is not a zero 
of F1(s), which is a reasonable assumption, as may be seen later from (3.3). Equation 
(2.4) has to be solved for U(x, y, S) for particular values of the complex variable s and 
thus U is itself complex. 

The boundary conditions for (2.4) are obtained by taking the Laplace transform 
with respect to t of the conditions specified for (2.2). Thus, for example, suppose that 
on the line y = L it is given that 

4% L, t) = WC5 t>, 

then the corresponding transformed boundary condition for Eq. (2.4) is 

qx, L, s) = W(x, s). 

If, in particular, u is independent of t on the boundary then 

24(x, L, t) = w(x) and U(x, L, s) = w(x)/s. 

3. DESCRIPTION OF THE ALGORITHMS USED 

3.1. Fast Fourier Transform Algorithms 

In order to construct a complete solution to Eq. (2.1) for a particular value of t, it 
is necessary to solve (2.4) several times for different complex values of s. Hence an 
efficient method of solution of (2.4) is desirable. For this reason the method of fast 
Fourier transforms, described for Poisson’s equation by Hackney [4, 51 and for a 
more general class of partial differential equations by Le Bail [6], was employed. 
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In the remainder of this section a brief description of both five-point and nine-point 
methods (assuming Dirichlet boundary conditions) is presented for the solution of 
equations of the form 

cz+ + s+ = q, (3.1) 

where 4, q, and S are complex. This particular equation is studied in detail since for 
all the test problems described in Section 4, the subsidiary elliptic equation takes the 
form (3.1), where S is a function of s only. 

For Poisson’s equation with simple boundary conditions, Pickering [7] demonstrated 
that the extra accuracy, obtained using the nine-point [15] rather than the five-point 
method, is achieved with relatively little extra computational effort. (For grids of 
15 x 15, 31 x 31, and 63 x 63 points the nine-point method was found to take 
approximately 28 % more computer time than the five-point method). Moreover 
since Eq. (3.1) is only slightly more complicated than Poisson’s equation it was to be 
expected that the nine-point method would show similar advantages over the five-point 
method for the present problem. 

The Fourier transform was employed in the x direction and the region was overlayed 
with a square grid of side h. [The five-point method may also be employed on a 
rectangular grid. J Furthermore, & denotes the vector of internal nodal + values along 
a grid row parallel to the x axis (so that the ith component of +j is $ij ; i = 1, 2,..., n). 

For both methods the complete set of finite difference equations derived from 
Eq. (3.1) may be written in the form 

Ah + B(+j+, + +,-,I = Qj (j 

where A and B are nth-order symmetric matrices. 
For the five-point method 

A = A, + ShzZn , 

1, 2,..., n) 

0, 
0 
0 

1 
-4 I3 

where 

A, = 

and 

0 
0 

Qi = 

1 0 0 ..* 
-4 1 0 *-. 

1-41 0 
. . . 

. . . 0 1 -4 
. . . 0 1 

B = I,, 

h%,,j - 4o.i 
h%,.i 1 
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The eigenvalues, A, , and corresponding eigenvectors, xk , of A,, are given by 

and 
x, = -4 + 2 cos ek 

= 
xk = [sin 8, ) sin 28, 

(k 1, 2 )...) n), (3.2) 
,..., sin n&lT, 

respectively, where 

Ok = h/(n + 1). 

For the nine-point method, 

A = A, + +Sh2( 12 - Sh2) I, , 
where 

A, = 4 

-5 1 . . . . 0 
1-5 1 0 * . 0 
0 l-5 1 o.*o 
. . . . . , . . . . . . . . 
0 . . 0 l-5 1 
0 . . . 0 l-5 

B = $A1 + 91,) 
and 

Bh2(12 - sh2) 41,j + !fh4V2ql,j - 4$&,j - &.j+l - $O.j-1 

&h2(12 - Sh2) q2,j + +h4V2q2,j 
Qj = 

ih”(l2 -- Sh2) qn-l,i + $h4V2q,_,,j 
+h2(12 - sh2) 4n.j L Bh4V2qn,j - 44n-+l,j - 4n+l,j*l - +n+l.j-1 1. 

The eigenvalues, pcLk , of A, are given by 

plc = -20 $ 8 cos 8, (k = 1, 2,..., n) 

and the corresponding eigenvectors are given by Eq. (3.2). 
Thus, for both methods, a suitable orthogonal basis for the expansion of each c$~ is 

provided by Eq. (3.2) and fast Fourier transforms may be used to obtain a solution of 
Eq. (3.1). The odd/even reduction process described in [4, 51 was used in both methods. 

3.2. Numerical Inversion of the Laplace Transform 

Several approaches to the numerical inversion of the Laplace transform have been 
proposed (see, in particular, [8-14, 16, 171. The algorithm proposed by Vlach et al. 
[8-l 11, based upon the PadC approximation to ez, is the one we shall adopt. 

The inversion formula for the Laplace transform is 

v(t) = (27ri)-l lCIyI V(s) est ds 



PDE’s SOLVED BY LAPLACE AND FF TRANSFORMS 261 

where c is a real constant greater than the real part of any pole of V(s). Making the 
substitution z = st, this becomes 

v(t) = (2&-l .c,‘:Ir: V(z/t) ez dz. 

In the numerical inversion method described by Vlach [8], e* is replaced by the PadC 
approximation 

where PN(z) and Q,(z) are polynomials of degree N and M, respectively. The poles 
of [N,M(~) may be shown [8] to be all simple poles and so a partial fraction expansion 
gives 

SN.& = g &l(z - ZA 

where the poles and residues of SN,,,(z) are, respectively, zj and Ki . Hence, replacing 
eZ by tN,M(~) and completing the contour in the right-hand plane by a semicircular 
arc at infinity, the numerical approximation to the integral becomes 

G(t)= -f,~lKJ’($), (3.3) 

provided that the function v(zJt) tN.M(~i) h as at least two more finite poles than zeros 
[lo], ensuring that the contribution from the semicircular arc is zero. Note that for a 
fixed pair M, N, the constants Kj and zj may be regarded as known parameters. A 
suitable choice for most problems is N = M - 2. 

If M is even, all the roots of QM(z) occur as complex conjugate pairs and Eq. (3.3) 
may then be modified to give 

where the bar denotes the complex conjugate and M’ = M/2. The values of K$ and zj 
are tabulated in [I l] for various values of M and N but they can be easily calculated 
by a Newton-Raphson procedure. 

Singhal and Vlach have proved [IO] that Eq. (3.4) inverts exactly the first 
M + N + 1 terms of the Taylor series of any function v(t). For small values of t, 
smaller values of M tend to give the more accurate results, since with increasing M 
the residues Kj grow rapidly in magnitude and computer round-off increases the 
error. The accuracy of the method for a number of test functions is discussed in [IO]. 
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Formulas for evaluating time derivatives of the solution can be obtained from 
the standard expression 

L?[&@t] = sV(s) - u(0). 

The terms involving initial conditions do not contribute to the inversion and the 
expression for the first derivative is 

Similar expressions may be written down for higher order derivatives. 
Throughout the calculations M was taken to be even, so that Eq. (3.4) was used. 

The choice N = M - 2 was satisfactory in the evaluation of au/at in problem 2, but 
could not be used to evaluate Pu/at2. For the latter we would have required 
N = M - 4 if we had wished to use Eq. (3.4), or N = A4 - 3 using Eq. (3.3). 

4. NUMERICAL RESULTS 

4.1. Test Problems 

As was stated in Section 2, a broad class of equations can be treated by this method. 
We shall demonstrate the merits of the method by reference for the most part to 
relatively straightforward model problems with just one example from the more 
general class. 

Problem 1. The wave equation 

was solved on the square region 0 < x < I, 0 < y < 1, subject to the condition u = 0 
on the boundaries and with initial conditions 

24(x, y, 0) = sin ~TX sin 9ry, fig (x, y, 0) = 0. 

This has analytical solution u(x, y, t) = cos (21i2d) sin (TX) sin (rry). The equation to 
be solved by FFT is 

8-u a2iJ -++ ax2 ay2 
- s2U = --s sin (TX) sin (7ry), 

which has the form of (3.1). 
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Problem 2. The heat conduction equation 

2% a2u 
-+- 

i?U 

8x2 ay2 =zr 

was solved for U(X, y, t) and &4(x, y, t)/Zr on the same region, with u = 0 on the 
boundaries and initial condition 

24(x, y, 0) = sin (77x) sin (ny). 

The analytic solution is u(x, y, t) = exp (-2n2t) sin (TX) sin (ny). The equation to 
be solved by FFT is 

aw aw -+-- 
ax2 ay2 sU = -sin (77x) sin (z-y). 

A comparison of the formulations for these two problems illustrates an important 
feature of the method. The effect of changing from the hyperbolic wave equation 
problem to the parabolic heat conduction equation is merely to alter coefficients in 
the subsidiary equation. The extra programming is consequently negligible. 

For both problems the numerical solutions were obtained over a spatial grid 
containing 15 x 15 internal mesh points. Both the five-point and the nine-point 
FFT algorithms were tested. The parameter M’, controlling the accuracy of the 
numerical Laplace inversion algorithm, was varied and given values M’ = 2, 5, or 8. 
For Problem 2, as another comparison, results for both u and au/at were also deter- 
mined by the Peaceman-Rachford AD1 method. 

A suitable test problem with a time-varying source function and boundary condi- 
tions was taken from Gourlay and McGuire [ 181 and is reproduced below. 

Problem 3. The equation 

au 2zu a2u -~ 
at - 2x2 +- 2v2 + g(x, YY t) 

was solved over the square 0 < x < 2, 0 < y < 2 with 

g(x, y, t) = sin x exp( - t)/( 1 + y)” - 2x - 6xy 

and initial and boundary conditions appropriate to the solution 

u(x, y, t) = sin x In (1 + y) exp (-t) + x”y + xy2. 

This problem was solved using the FFT-LT algorithm for various grids and values 
of M’. For comparison, results were also obtained using the Peaceman-Rachford 
AD1 method as formulated in [18]. (The computations in [18] were for a 19 x 19 grid 
which is unsuitable for the usual FFT method.) 
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In Section 2 it was stated that the type of equation which can be treated is one which 
may involve quite elaborate operator expressions in a/at. The three problems for- 
mulated so far do not really demonstrate the power of the algorithm in its ability to 
deal easily with such terms. We therefore consider the following equation which is 
more indicative of the class of problems which may be handled. 

Problem 4. On the domain 0 :G x -< 1,O < y < 1, the equation 

a3u 63l.d 
-----t-p 

i a%4 a2u a2u n __-__- 
at ax2 + at ay2 ijx’ a~2 at2 

3 $ - 2~ z -e-t 

or 

(1 +@$+(I +D)G- (D2 + 30 + 2) u = -e& 

has the solution 

if the initial conditions are 

u = (x2 + y2 + t) e-t 

u = x2 + y2, u=,-xx2 
at 

- y2, 
834 azu 2 - = __ = 
ax2 ap 

and the boundary conditions are 

40, Y, t) = (Y” + 9 e+, 24(x, 0, t) = (x2 + t) e+, 

41, Y, t) = (1 + y2 + t> e+, U(x,l,t)=(l +x2+t)e-t. 

The subsidiary equation to be solved by FFT is 

aw aw 
( 

s2 + 3s + 2 __ __- 
,3X2 + ay2 s -t 1 1 

u=- 
&--- (s-: 1) [( x2 t .v”)(s + 2) - 31. 

4.2. Results 

Results for the wave equation (Problem 1) are given in Table I. The five-point 
formula for the FFT gives results which may be seen to be very accurate for 
0 < t < 0.1 and reasonably accurate for 0.1 < t < 0.5. The use of the larger value 
of M’ (M’ = 5) gives no improvement in accuracy for small values of t but it does 
allow computation over a greater time range than does M’ = 2. Results obtained 
using M’ = 8 were in general slightly inferior to those quoted for the smaller values 
of M’ since computer round-off increases the error. 

Since, for 0 < t f 0.5, changing M’ produces negligible changes in the accuracy, 
it may be inferred that for this time range, the errors are predominantly associated 
with the spatial grid and the FFT algorithm chosen. That this is so may be seen by 
comparing the five-point with the nine-point results over the same 15 x 15 grid and 
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TABLE I 

Solution u(x, y, r) for the Wave Equation (Problem 1) at the Midpoint for Various t Valuesa 

Five-point FFT 
Nine-point FFT 

t Analytic solution M’ = 2 M’=S M’=5 

0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 
2.0 

0.999013 3.2 x 1O-6 3.3 x 10-G 1.6 x lo-’ 
0.996055 1.3 x 10-b 1.3 x IO-5 1.0 x 10-S 
0.975427 7.9 x 10-e 7.8 x 1O-5 2.6 x lo-’ 
0.902917 3.1 x lo-” 3.1 x 10-a 2.4 x 1O-6 
0.603517 1.1 x 10-a 1.1 x 10-S 8.6 x IO-6 

-0.605700 2.1 x IO-3 2.8 x 1O-8 2.2 x 10-b 
-0.266255 6.1 x 1O-2 6.9 x 1O-3 5.3 x 10-b 
-0.858216 - 7.4 x IO-3 2.8 x 1O-5 

Q 1.5 x 15 grid; absolute errors quoted. 

using the same value M’ = 5. The results from the nine-point formula are seen to be 
excellent over the large time span 0 < t < 2. 

Results for the heat conduction equation (Problem 2) are given in Tables II and III. 
The results for the five-point FFT are seen to be accurate for the time range 
0 < t < 0.1 using M’ = 2 and for 0 < t < 0.2 using 44’ = 5. The results using the 
nine-point formula are again seen to show the same order of improvement observed 
for the wave equation. 

Table II also contains results from the Peaceman-Rachford ADI method applied 
directly to the PDE (without Laplace transformation) using a time step of 0.001 and 

TABLE II 

Solution u(x, y, t) for the Heat Conduction Equation (Problem 2) at the Midpoint for Various 
t Values” 

Five-point FFT 

0.005 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 

0.906018 2.9 x 1O-4 2.9 x 1O-4 - 2.8 x 1O-4 
0.820869 5.2 x 1O-4 5.2 x 1O-4 4.0 x 10-C 5.2 x 1O-4 
0.673825 8.5 x 1O-4 8.5 x 1O-4 6.6 x 10-e 8.5 x 1O-4 
0.372708 1.2 x 10-s 1.2 x 10-s 9.2 x 1O-B 1.2 x 10-a 
0.138911 1.0 x 10-a 8.8 x 10-a 6.9 x 1O-8 8.7 x lo+ 
1.929 x lo-* 2.4 x 1O-3 2.5 x 10-a 1.8 x 10-O 2.4 x lo-” 
5.172 x 1O-5 1.1 x 10-z 1.8 x lo+ 5.3 x 10-a 1.7 x 10-B 
2.67 x lo-lo 9.6 x 1O-3 3.2 x 10-j 3.3 x 10-S 1.7 x 10-10 

t 
Analytic Nine-point FFT P-R AD1 
solution M’=2 M’=5 M’=5 St = 0.001 

o 15 x 15 grid; absolute errors quoted. 
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TABLE III 

Values of kk(x, y, t)jat for the Heat Conduction Equation (Problem 2) at the Midpoint for Various 
r Values” 

t 

0.005 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 

Analytic 
solution 

Five-point FFT P-R ADI 
M’ c: 5 at = 0.001 

- 17.8841 5.2 x 10m2 
- 16.2023 4.2 x lO-2 
-13.3008 2.6 x 1OW 

-1.35696 3.2 x lo-” 
-2.74200 8.6 x 1O-3 
-0.380894 3.6 x 1O-3 
-1.1021 x 10-a 3.4 x 10-s 
-5.28 x 1OW 6.3 x 1O-a 

5.0 x 10-Z 
4.0 x 10-Z 
2.5 x lO-2 
1.3 x 10-9 
8.7 x lo-” 
3.6 x lO-3 
2.9 x lo-” 
3.2 x 10-O 

a 15 x 15 grid; absolute errors quoted. 

the same 15 x 15 spatial grid. The results are seen to be virtually identical with the 
five-point FFT results with M’ = 5. This confirms that the errors are almost entirely 
due to the spatial discretization, the numerical Laplace transform giving a very small 
contribution to the error. 

One of the merits of the Laplace transform approach is that it is a simple matter 
to produce values for time derivatives of the solution by means of Eq. (3.5). The 
solution for au/at for this problem is shown in Table III and is compared with results 
from the AD1 method. Again agreement between the two methods is excellent. 

The two problems considered so far both had simple boundary conditions. The 
algorithm we are proposing very readily handles boundary conditions which may or 
may not be functions of the appropriate spatial variables but which are functions of 
time as in Problem 3. Upon taking the Laplace transform they become functions of 
the algebraic Laplace transform variable s and so the boundary conditions are 
treated in precisely the same way as time-invariant boundary conditions with no 
extra programming or computational effort. 

The results for Problem 3 are presented in detail since this is a good example to 
illustrate the main sources of error. Figure 1 shows graphs of absolute error at the 
midpoint of the mesh as a function of time and for three mesh sizes. (The parameters 
are M’ = 5 in the five-point FFT-LT algorithm and 6t = 0.01 in the AD1 algorithm.) 
The errors from the two algorithms are seen to be very similar over the time interval 
0 -=c t < 2. The predominant source of error is again due to spatial discretization, 
errors for small t being reduced, as expected, by a factor of 4 when the spatial mesh 
size is halved. 

Further results are given in Fig. 2 which shows the errors for the transform 
algorithm only but over an extended time range and for two values of M’. The two 
values of M’ are seen to give consistent results for small t. With M’ = 2 the errors due 
to the Laplace transform part of the algorithm become predominant for times greater 
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FIG. 1. Comparison between midpoint errors given by FFT-LT and AD1 algorithms. (Problem 3, 
three mesh sizes). 

TABLE IV 

Solution U(X, y, t) for Problem 4 at the Midpoint for Various t Values” 

t 

0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 

Analytic 
solution 

Five-point FFT 
- 

M’=2 M’=5 

0.542902 1.9 x IO-10 7.5 x 10-S 
0.573111 8.2 x 10-10 1.8 x lo-’ 
0.606530 3.2 x lo-’ 1.2 x 10-1 
0.551820 1.0 x 10-S 1.3 x 10-1 
0.338338 6.0 x 1O-4 1.8 x 1O-n 
0.037059 8.0 x 1O-3 8.4 x 1O-8 
0.000476 3.1 x 10-4 1.1 x 10-G 

a 15’ x 15 grid; absolute errors quoted. 
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I I 1 

FIG. 2. Effect of M’ and mesh size on midpoint errors given by FFT-LT algorithm. (Problem 3). 

than t = 2. With M’ = 5, because effectively the number of terms in the Taylor 
series approximation is increased, a high degree of accuracy is maintained until 
t = 20. Results obtained with M’ = 8 are generally inferior because of excessive 
round-off error unless double-precision computer arithmetic is used. 

Table IV contains typical numerical results for Problem 4. This example was 
chosen to illustrate the complexity of equation and boundary conditions which may 
be handled by the method. Very satisfactory results are abtained, particularly with the 
larger value of M’. 

4.3. Computation Time 
It is difficult to present a definitive statement on computation time because of the 

wide variety of problems which can be treated. The following considerations would 
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apply to any problem. Assuming a value for M’ (the parameter in the Laplace trans- 
form inversion algorithm effectively governing the number of terms in the Taylor 
expansion) for a given time point the subsidiary elliptic equation has to be solved M’ 
times in complex arithmetic for the complex function V(X, y, s). The method is 
basically a single-step method so that the computations need only be performed for the 
specific time points for which the solution is required. 

By contrast, when using finite difference methods, the problem and the method of 
solution will dictate how many small time increments are needed to achieve satis- 
factory accuracy. Comparisons are therefore difficult to make and probably the only 
general statement that can be made is that problems requiring a small 62 in the finite 
difference representation will also require a large M’. 

Our experience with Problem 3 with its rather involved boundary conditions is of 
interest as a guide to the potential that the method possesses. Table V gives the 
computation times on an ICL 1906s computer using Fortran. For each of the mesh 
sizes considered, the computation time per time increment is given for the Peaceman- 
Rachford AD1 method and the computation time per unit M’ is given for the trans- 
form method. The total computation time may then be assessed as follows using the 
results for the 15 x 15 grid as an illustration. In order to evaluate the solution at 
t = 1, the AD1 method (with 6t = 0.01) would require 14.5 set, whereas the trans- 
form method (with M’ = 2) would require 1.04 sec. The respective absolute errors 
at the midpoint are 7.47 x 1O-6 and 1.31 x 10-5. 

TABLE V 

Typical Computation Times for Problem 3 on an ICL 1906s Computer 

Time to f = 1 (xc) 

Grid 
size @c) 

ADI FFT-LT 
(se4 (8t = 0.01) (M’ = 2) 

7x7 0.035 0.13 3.5 0.26 

1.5 x 15 0.145 0.52 14.5 1.04 

31 x 31 0.585 2.2 58.5 4.4 

This demonstrates that the method can be very competitive with regard to computa- 
tion time. However, it must be mentioned that for a problem, such as Problem 2, in 
which the boundary conditions do not vary with time and so do not have to 
be evaluated at each time step the ADI methods become relatively more effective. 

To summarize, the transform method would generally be best if a given problem 
contained any of the following features: if it was other than the basic heat conduction 
equation, if the boundary conditions and source functions were time varying, or if the 
solution had to be calculated over an extended time range on a coarse time grid. 



270 HUNTLEY, PICKERING, AND ZINOBER 

5. CONCLUSIONS 

In this paper we have put forward a method for the numerical solution of a large 
class of time-dependent linear partial differential equations defined on a square or 
rectangular spatial domain. The method combines a numerical Laplace transform 
inversion algorithm with either a five- or nine-point fast Fourier transform method. 
Numerical results presented for four test problems justify the following conclusions. 

With regard to accuracy, the main errors arise from the spatial discretization. Thus 
the five-point formula gives results which are very similar to those obtained using 
established AD1 methods and the same mesh. The nine-point formula gives results 
which are significantly better, as would be expected. 

The main advantages of the method are: 

(1) It is as accurate as the Peaceman-Rachford AD1 method on the same 
spatial grid. 

(2) It is very easy to program once the fast Fourier transform algorithm has been 
programmed. 

(3) The program is very flexible and only trivial changes are required to adapt 
it from solving, say, the hyperbolic equation of Problem 1 to the parabolic equation 
of Problem 2. 

(4) The class of problems with time-varying boundary conditions and source 
functions is no more difficult to handle than time-invariant functions. For this class 
the method can give the solution at specified time points appreciably faster than the 
Peaceman-Rachford AD1 method. 

(5) Derivatives of the solution with respect to time are easily and accurately 
evaluated (though this may involve some adjustment of the parameters M’, N in the 
Laplace transform inversion formula if higher order derivatives are required). 

(6) The method has the single-step property. This allows the choice of using a 
larger value of h4’ and evaluating the solution directly at a specified time point. 
Alternatively with a smaller value of M’, the solution may be evaluated at intermediate 
time points and the algorithm restarted at each of these points using the current 
solution (and its derivatives if necessary) as the initial condition(s). Since one is 
usually seeking a time history of the solution this latter course is probably the best. 

The single-step property is also possessed by methods based on approximations 
to the matrix exponential function. For example, the Chebyshev rational method 
described by Cavendish et al. 1193 for certain linear parabolic equations, can deal 
with problems with boundary conditions and source terms which are piecewise- 
constant in time. Our method has the advantage that it can deal with a wide class of 
problems with time-dependent boundary conditions and source terms, but the spatial 
dependence of the coefficients must be restricted to the forms indication in Eq. (2.1) if 
FFT methods are to be used to solve the subsidiary elliptic equation. 
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